Section 12.6
 A Survey of Quadric Surfaces

Conic Sections
Quadric Surfaces
Conic Cylinder
Ellipsoid
Elliptic Parabloid
Hyperbolic Paraboloid
Hyperboloid of Two Sheets
Comparing Quadric Surfaces
More Examples

1 Conic Sections

Review: Conic Sections

In \mathbb{R}^{2}, conic sections are curves satisfying an equation of the form

$$
A x^{2}+B x+C y^{2}+D y+E=0
$$

Ellipse

$$
\left(\frac{x-h}{a}\right)^{2}+\left(\frac{y-k}{b}\right)^{2}=1
$$

Hyperbola

$$
\begin{aligned}
& x^{2}-y^{2}=a^{2} \\
& y^{2}-x^{2}=a^{2}
\end{aligned}
$$

2 Quadric Surfaces

Quadric Surfaces

In \mathbb{R}^{3}, a quadric surface is a surface satisfying an equation of the form

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+a x+b y+c z+d=0 .
$$

In this course we discuss quadric surfaces in standard form. That is, D, E and F are all zero and at least one of A, B and C is not zero. A quadric surface is classified by the curves obtained by intersecting it with planes parallel to the $x y, x z$, and $y z$ planes. (These intersection curves will often be conic sections.)

Quadric Surfaces

There are many kinds of quadric surfaces (more than there are conics):
conic cylinders; ellipsoids (including spheres); elliptic paraboloids; hyperbolic paraboloids; hyperboloids of one sheet; hyperboloids of two sheets; cones

- What is important is knowing how to recognize a quadric surface from its equation or its cross-section curves, or vice versa. (The names aren't too important.)
- The cross-section curves are all conic sections (defined by degree-2 polynomials).
- Cross-section Curves are the intersection of the surface and a plane; the resulting curve on the plane is a two dimensional curves in three dimensional space; also denoted by the trace of the surface on the plane.
- In this section, to find a cross-section curve, set one of the variables equal to a constant.

3 Conic Cylinder

Conic Cylinder

Surfaces with an equation containing only 2 of the three variables. Cylinders can "slide" along the axis of the missing variable. That is, for all values of the missing variable, the cross-section curves are the same.

```
> Link
```


$$
x^{2}+\frac{z^{2}}{9}=1
$$

Cross-section Curves: lines and ellipses.
Cross-section Curves: lines and hyperbolas.
Cross-section curves: lines and parabolas.

$$
y \text { is a free variable. }
$$

4 Ellipsoid

Ellipsoid

Cross-sectionals are ellipses or points.

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1
$$

For example, intersecting the ellipsoid

$$
\left(\frac{x}{2}\right)^{2}+y^{2}+\left(\frac{z}{3}\right)^{2}=1
$$

with the plane $z=1$ gives the ellipse

$$
\left(\frac{x}{2}\right)^{2}+y^{2}+\left(\frac{1}{3}\right)^{2}=1
$$

or

$$
\left(\frac{x}{2}\right)^{2}+y^{2}=\frac{8}{9}
$$

$a, b, c=$ radii in x, y, z directions

5 Elliptic Parabloid

Elliptic Paraboloid

$$
z=\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}
$$

- Cross-sectionals:

$$
\begin{array}{c|cc|c}
\text { Plane } & \text { Cross-section curves } & \text { Plane } & \text { Cross-section curves } \\
\hline \boldsymbol{z}=\boldsymbol{k} & \text { Ellipses or a point } & & \boldsymbol{x}=\boldsymbol{k} \text { or } \boldsymbol{y}=\boldsymbol{k}
\end{array} \quad \text { Parabolas }
$$

- Surface passes the Vertical Line Test (since \boldsymbol{z} is a function of \boldsymbol{x} and \boldsymbol{y}).
- When $\boldsymbol{a}=\boldsymbol{b}$, the horizontal intersections are circles.

Intersecting with $z=k$:constant >0	Intersecting with $z=k:$ constant <0	Intersecting with $z=0$
is an ellipse: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=k$.	is not Possible.	is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=0$, a point: $(0,0,0)$.

Intersecting with $x=k:$ constant,	Intersecting with $y=k:$ constant,
is a parabola: $z=\frac{k^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$	is a parabola: $z=\frac{x^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}$

6 Hyperbolic Paraboloid

Hyperbolic Paraboloid (Saddle Surface)

$$
z=\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}
$$

Plane	Cross-section curves
$x=k$	Parabolas (downward)
$y=k$	Parabolas (upward)
$z=k$	Hyperbolas
$z=0$	Two intersecting lines

Hyperboloid of One Sheet

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=\left(\frac{z}{c}\right)^{2}+1
$$

Cross-sections:

Cone

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=\left(\frac{z}{c}\right)^{2}
$$

- Cross-sectionals:

| Plane | Cross-sectionals |
| :---: | :---: |$\quad \begin{gathered}\text { Plane }\end{gathered} \quad$ Cross-section curves

Intersecting with $z=0$ results in a single point. Intersecting with $x=0$ or $y=0$ results in a pair of lines.

- Halves of the cone are called nappes.
- Nappes are the graphs of the functions

$$
z= \pm c \sqrt{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}} .
$$

7 Hyperboloid of Two Sheets

Hyperboloid of Two Sheets

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=\left(\frac{z}{c}\right)^{2}-1
$$

- Cross-sectionals:

$$
\begin{array}{c|c|c}
\text { Plane } & \text { Cross-sectionals } & \text { Plane } \\
\cline { 1 - 2 } z=k \text { and }|k| \geq|c| & \text { Cross-section curves } \\
\text { Hyperbos or a point }
\end{array}
$$

- If $-|c|<z<|c|$, there are no (x, y) solutions to the equation (because then the RHS is negative and the LHS has to be positive).
- All solutions have $z \geq|c|$ (top sheet) or $z \leq-|c|$ (bottom sheet).
- Each sheet is the graph of a function.

Hyperboloids and Cones - Comparison

What do the equations have in common? When all variables are moved to one side of the equation, all three variables appear in power two; one of the three has a different sign than the others, we use the intercept(s) of that variable to quickly identify the surface.

Hyperboloid of 2 sheets

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=-1$
Two z-intercepts. Some z-cross
Sections are not possible.

8 Comparing Quadric Surfaces

Comparing Some Quadrics

$$
z^{2}=x^{2}+y^{2}+a \text { for } a=4
$$

9 More Examples

Example 1: Sketch and identify the graphs of

(a) $z=3 x^{2}+4 y^{2}$				(b) $z=2 x^{2}-5 y^{2}$
Passes VLT?	Yes	Yes		
Intersect with $x=k$	Parabola (up)	Parabola (down)		
Intersect with $y=k$	Parabola (up)	Parabola (up)		
Intersect with $z=k$	Ellipse or a Point	Hyperbola or Two Lines		

(a) Elliptic paraboloid

(b) Hyperbolic paraboloid

Example 2: Sketch and identify the graph of

$$
4 x^{2}-y^{2}+9 z^{2}+4=0
$$

Solution: Rewrite the equation as $4 x^{2}+9 z^{2}=y^{2}-4$ or equivalently

$$
x^{2}+\left(\frac{3 z}{2}\right)^{2}-\left(\frac{y}{2}\right)^{2}=-1
$$

Intersect with $x=k$	Hyperbola
Intersect with $y=k($ if $\|k\|>2)$	Ellipse
Intersect with $y=k$ (if $\|k\|<2)$	Nothing!
Intersect with $z=k$	Hyperbola

Hyperboloid of two sheets

