Section 12.6 A Survey of Quadric Surfaces

Conic Sections Quadric Surfaces Conic Cylinder Ellipsoid Elliptic Parabloid Hyperbolic Paraboloid Hyperboloid of Two Sheets **Comparing Quadric Surfaces** More Examples

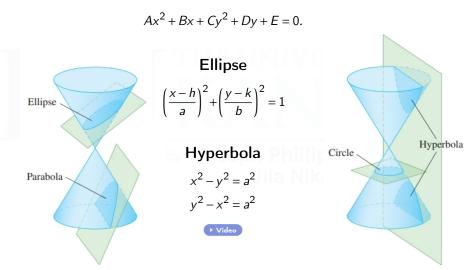
Loseph Phillip Brennan

PreLecture Review Video

1 Conic Sections

Review: Conic Sections

In \mathbb{R}^2 , **conic sections** are curves satisfying an equation of the form



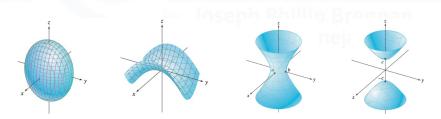
2 Quadric Surfaces

Quadric Surfaces

In \mathbb{R}^3 , a **quadric surface** is a surface satisfying an equation of the form

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + ax + by + cz + d = 0.$$

In this course we discuss quadric surfaces in standard form. That is, D, E and F are all zero and at least one of A, B and C is not zero. A quadric surface is classified by the curves obtained by intersecting it with planes parallel to the xy, xz, and yz planes. (These intersection curves will often be conic sections.)



Quadric Surfaces

There are many kinds of quadric surfaces (more than there are conics):

conic cylinders; ellipsoids (including spheres); elliptic paraboloids; hyperbolic paraboloids; hyperboloids of one sheet; hyperboloids of two sheets; cones

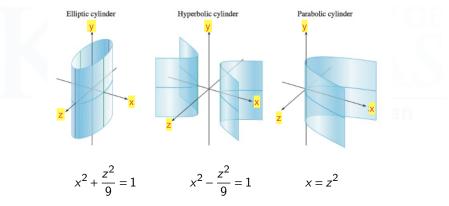
- What is important is knowing how to recognize a quadric surface from its equation or its cross-section curves, or vice versa. (The names aren't too important.)
- The cross-section curves are all conic sections (defined by degree-2 polynomials).
- Cross-section Curves are the intersection of the surface and a plane; the resulting curve on the plane is a two dimensional curves in three dimensional space; also denoted by the trace of the surface on the plane.
- In this section, to find a cross-section curve, set one of the variables equal to a constant.

3 Conic Cylinder

Conic Cylinder

Surfaces with an equation containing only 2 of the three variables. Cylinders can "slide" along the axis of the **missing variable**. That is, for all values of the missing variable, the cross-section curves are the

same. Link



Cross-section Curves: lines and ellipses. Cross-section Curves: lines and hyperbolas. Cross-section curves: lines and parabolas.

y is a free variable.

4 Ellipsoid

Ellipsoid

Cross-sectionals are ellipses or points.

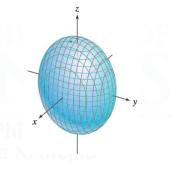
$$\left(\frac{\boldsymbol{x}}{\boldsymbol{a}}\right)^2 + \left(\frac{\boldsymbol{y}}{\boldsymbol{b}}\right)^2 + \left(\frac{\boldsymbol{z}}{\boldsymbol{c}}\right)^2 = 1$$

For example, intersecting the ellipsoid

$$\left(\frac{x}{2}\right)^2 + y^2 + \left(\frac{z}{3}\right)^2 = 1$$

with the plane z = 1 gives the ellipse

$$\left(\frac{x}{2}\right)^2 + y^2 + \left(\frac{1}{3}\right)^2 = 1$$



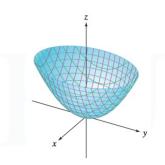
or

$$\left(\frac{x}{2}\right)^2 + y^2 = \frac{8}{9}$$

a, b, c = radii in x, y, zdirections

5 Elliptic Parabloid

Elliptic Paraboloid



$$\boldsymbol{z} = \left(\frac{\boldsymbol{x}}{\boldsymbol{a}}\right)^2 + \left(\frac{\boldsymbol{y}}{\boldsymbol{b}}\right)^2$$

- Cross-sectionals: Plane Cross-section curves z=k Ellipses or a point x=k or y=k Parabolas

 Surface passes the Vertical Line Test (since z is a function of x and y).
- When **a** = **b**, the horizontal intersections are circles.

Intersecting with $z = k$:constant > 0	Intersecting with $z = k$:constant < 0	Intersecting with $z = 0$
is an ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = k.$	is not Possible.	is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$, a point: (0,0,0).

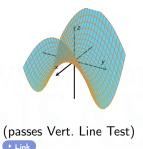
Intersecting with $x = k$:constant,	Intersecting with $y = k$:constant,
is a parabola: $z = \frac{k^2}{a^2} + \frac{y^2}{b^2}$	is a parabola: $z = \frac{x^2}{a^2} + \frac{k^2}{b^2}$

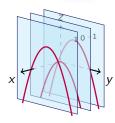
6 Hyperbolic Paraboloid

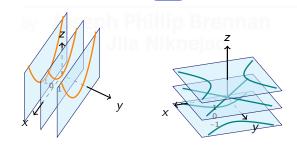
Hyperbolic Paraboloid (Saddle Surface)

$$\boldsymbol{z} = \left(\frac{\boldsymbol{x}}{\boldsymbol{a}}\right)^2 - \left(\frac{\boldsymbol{y}}{\boldsymbol{b}}\right)^2$$

Plane	Cross-section curves
x = k	Parabolas (downward)
y = k	Parabolas (upward)
z = k	Hyperbolas
<i>z</i> = 0	Two intersecting lines





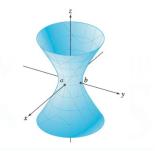


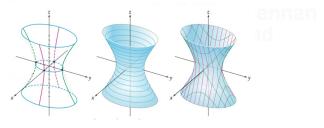
Hyperboloid of One Sheet

$$\left(\frac{\boldsymbol{x}}{\boldsymbol{a}}\right)^2 + \left(\frac{\boldsymbol{y}}{\boldsymbol{b}}\right)^2 = \left(\frac{\boldsymbol{z}}{\boldsymbol{c}}\right)^2 + 1$$

Cross-sections:

Plane	Cross-section curves	Plane	Cross-section curves
z = k	Ellipses	$x = k \neq a \text{ or } y = k \neq b$	Hyperbolas





Cone

$$\left(\frac{\mathbf{x}}{\mathbf{a}}\right)^2 + \left(\frac{\mathbf{y}}{\mathbf{b}}\right)^2 = \left(\frac{\mathbf{z}}{\mathbf{c}}\right)^2$$

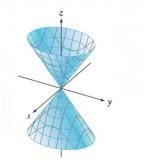
Cross-sectionals:

	Cross-sectionals	Plane	Cross-section curves
z = k	Ellipses or a point	x = k or $y = k$	Hyperbolas or pairs of lines

Intersecting with z = 0 results in a single point. Intersecting with x = 0 or y = 0 results in a pair of lines.

- Halves of the cone are called *nappes*.
- Nappes are the graphs of the functions

$$z = \pm c \sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}}.$$



7 Hyperboloid of Two Sheets

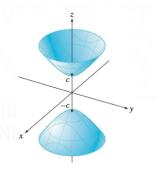
Hyperboloid of Two Sheets

$$\left(\frac{\boldsymbol{x}}{\boldsymbol{a}}\right)^2 + \left(\frac{\boldsymbol{y}}{\boldsymbol{b}}\right)^2 = \left(\frac{\boldsymbol{z}}{\boldsymbol{c}}\right)^2 - 1$$

Cross-sectionals:

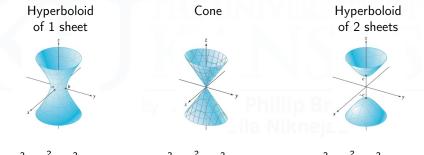
Plane	Cross-sectionals	Plane	Cross-section curves
$z = k$ and $ k \ge c $	Ellipses or a point	x = k or $y = k$	Hyperbolas

- If -|c| < z < |c|, there are no (x, y) solutions to the equation (because then the RHS is negative and the LHS has to be positive).
- All solutions have $z \ge |c|$ (top sheet) or $z \le -|c|$ (bottom sheet).
- Each sheet is the graph of a function.



Hyperboloids and Cones — Comparison

What do the equations have in common? When all variables are moved to one side of the equation, all three variables appear in power two; one of the three has a different sign than the others, we use the intercept(s) of that variable to quickly identify the surface.



$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

No *z*-intercept. All *z*-cross sections are possible. $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$

One *z*-intercept. All *z*-cross sections are possible. $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$

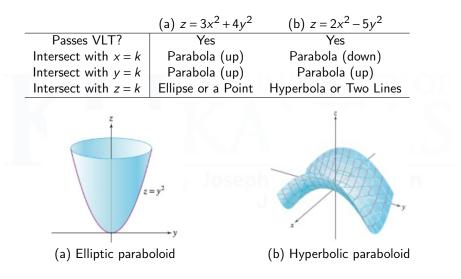
Two z-intercepts. Some z-cross Sections are not possible.

8 Comparing Quadric Surfaces

Comparing Some Quadrics

9 More Examples

Example 1: Sketch and identify the graphs of



Example 2: Sketch and identify the graph of

$$4x^2 - y^2 + 9z^2 + 4 = 0$$

<u>Solution</u>: Rewrite the equation as $4x^2 + 9z^2 = y^2 - 4$ or equivalently

$$x^{2} + \left(\frac{3z}{2}\right)^{2} - \left(\frac{y}{2}\right)^{2} = -1.$$

Intersect with $x = k$	Hyperbola
Intersect with $y = k$ (if $ k > 2$)	Ellipse
Intersect with $y = k$ (if $ k < 2$)	Nothing!
Intersect with $z = k$	Hyperbola

